Misallocation and Inequality

Nezih Guner^a, Alessandro Ruggieri^b

 $^{a}\mathrm{UAB}$ and CEMFI $^{b}\mathrm{University}$ of Nottingham

IZA Workshop

The Role of Search and Matching in Macroeconomics: A Retrospective

November 18, 2021

Introduction

- Differences in labor earnings across individuals are key sources of income inequality (Hoffmann et al 20)
- Firms shape earnings distribution:
 - not all firms pay the same wage to workers with similar characteristics (Abowd et al 99, Card et al 13, Song et al 19)
 - large firm wage premium (Bloom et al 18)
- Firms look very different across countries. In richer countries:
 - larger firm size (Bento and Restuccia 16)
 - firms more likely to train their workers (Ma et al 20)
- How do firms affect labor earnings distribution along development?

In this paper

- We document how the distribution of wage and salary income varies with GDP p.c.
 - the median increases faster than the mean
 - inequality at the top shrinks, inequality at the bottom expands
 - the GINI coefficient declines
- We build a model of firm dynamics and labor market frictions to interpret this evidence
 - heterogeneous firms and workers
 - sorting of high-skill workers into more productive firms
 - on-the-job human capital accumulation (learning + training)
- Cross-country patterns can be reproduced by two sources of misallocation
 - firm-level correlated distortions
 - larger search frictions
- On-the-job training account up to 40% of changes in earnings inequality across countries

Earnings dataset

- Coverage: 55 countries, 1981-2016
 - India (2004), GDP per capita: 2955.2 (2011, USD)
 - Luxembourg (2007), GDP per capita: 97864.2 (2013, USD)
- Source: IPUMS International, Survey on Income and Living Conditions (SILC), Luxembourg Income Study Database (LIS)
- Earnings measure: gross wages and salaries (including extra pay, tips, commissions, bonuses, piece-rate payments, occasional earnings)
- Demographics: gender, age, education, labor market status, job characteristics
- Sample restrictions: all employed workers with positive wage and salary income, 18-64 y.o.

Wage and salary employees

Slope: 0.127 (0.008)

The median earnings grow faster than the mean

Inequality at the bottom increases...

...while inequality at the top declines \bigcirc

The GINI coefficient declines

Evidence

- How does the earnings distribution change with development?
 - mean-median earnings ratio and GINI decline with development
 - earnings inequality at the bottom increases (p50-p10 ratio) while declining at the top (p90-p50)
- Robustness:
 - across sectors: no-agriculture, only industries
 - across education: non-college, college
 - across demographics: only males, only household heads, prime age
 - other measures: p90-p60 vs p40-p10 ratios, p80-p50 vs p50-p20 ratios 🔵

A model of firm dynamics and labor market frictions

- Search frictions and sorting (Lise et al 16)
 - search frictions as a source of misallocation (Martellini and Menzio 20)
 - search frictions vary with development (Poschke 19)
 - share of wage and salary employees increases with GDP p.c.
- Human capital accumulation on-the-job (Bagger et al 14, Flinn et al 17)
 - life-cycle wage growth higher in richer countries (Lagakos et al 18)
 - on-the-job training increases with GDP p.c.
- Industry dynamics (Hsieh and Klenow 14, Fajgelbaum 20)
 - larger firms in richer countries (Bento and Restuccia 2018)
 - dispersion and skewness of firm size increase with GDP p.c. (Poschke 18)
 - larger firms pay higher wages (Bloom et al 18)
 - larger firms provide more on-the-job training

Demographics

- Discrete time
- Unitary measure of heterogeneous workers
 - stochastic life-cycle in the labor market
 - employed or non-employed
 - ex-ante exogenous skill, h^0 , distributed with density $\psi_h(h) \in \mathcal{H} = \{h_0, h_1, ..., h_H\}$
 - on-the-job learning one-step jump forward with prob. p^e
 - on-the-job training one-step jump forward with prob. p^t
 - depreciation when non-employed one-step jump backward with prob. p^d
 - value of non-employed, home production, b
- Endogenous measure of heterogeneous firms
 - innate productivity, z, distributed with density $\psi_z(z)$ on \mathbb{R}^+
 - training costs, ξ , distributed with density $\psi_{\xi}(\xi)$ on \mathbb{R}^+
 - entry-exit dynamics
 - firm growth bounded by convex vacancy costs

Production

• Firm-level production technology

$$y = \int_0^\ell g(z,i) \psi_h^e(i|z,\xi) di$$

where $\psi_h^e(i|z,\xi)$ denotes the share of worker i in a firm (z,ξ) with total workforce ℓ

• Firm-worker match production:

$$g(z,i) = zh(i)$$

where h(i) is the human capital of worker i

• Linearity of technology:

$$y = z\bar{h}\ell$$

where \bar{h} is the average human capital of workers employed in the firm

$$\bar{h} = \int_0^1 h(i) \psi_h^e(i|z,\xi) di$$

Distortions and frictions

- Firms subject to output distortions (Bento and Restuccia 18)
 - Each firm retains a fraction 1τ of its output, assumed to depend on firm-level productivity z

$$\tau(z) = 1 - z^{-\zeta}$$

where ζ is the elasticity of firm's distortion to its productivity

- Search and matching frictions (Mortensen and Pissarides 99)
 - CRS matching functions between searchers U (only non-employed) and vacancy v

$$m(U,v) = \frac{Uv}{(U^{\eta} + v^{\eta})^{\frac{1}{\eta}}}$$

where η governs the elasticity of contacts to vacancies

• Exogenous and endogenous separation

Bargaining, training and hiring

• Wages are the solution to a Nash bargaining problem

$$w(z,\xi,h) = \arg\max_{w} \quad \left[\underbrace{J^{e,h}(z,\xi,h;w) - J^{u,h}(h)}_{\text{worker surplus}}\right]^{\beta} \left[\underbrace{V^{h}(z,\xi,h;w)}_{\text{firm surplus}}\right]^{1-\beta}$$

where $\beta \in (0, 1)$ is the workers' bargaining power

• Training decision at a match level (Flinn et al 17)

$$\mathbf{1}^{t}(z,\xi,h) = \arg \max_{\mathbf{1}^{t} \in \{0,1\}} \quad \mathbf{1}^{t} p^{t} [S^{h}(z,\xi,h+1) - S^{h}(z,\xi,h)] - \mathbf{1}^{t} \xi$$

where p^t is the probability of skill jump and

$$S^{h}(z,\xi,h) = J^{e,h}(z,\xi,h) - J^{u}(h) + V^{h}(z,\xi,h)$$

• Match formation decision: $\mathbf{1}^{h}(z,\xi,h) = \begin{cases} 1 & \text{if } S^{h}(z,\xi,h) \ge 0\\ 0 & \text{otherwise} \end{cases}$

Firm vacancy posting and entry

• Per-period firm problem

$$\pi(z,\xi) = \max_{v(z,\xi) \ge 0} \quad v(z,\xi)\phi_f \sum_{h \in \mathcal{H}} \max\{0, (1-\beta)S^h(z,\xi,h)\}\psi_h^u(h) - c(v(z,\xi))$$

where

- ψ_h^u is the distribution of ability of the unemployed
- $c(\cdot)$ are vacancy costs, with c' > 0, c'' > 0
- ϕ_f is the vacancy contact probability
- Discounted sum of per-period aggregate profits

$$\Pi(z,\xi) = \sum_{t=0}^{\infty} \left(\frac{1-\delta_f}{1+r}\right)^t \pi(z,\xi) = \frac{1+r}{r+\delta_f} \pi(z,\xi)$$

- Entry decision: $\mathbf{1}^{e}(z,\xi) = \begin{cases} 1 & \text{if } \Pi(z,\xi) \geq c^{e} \\ 0 & \text{otherwise} \end{cases}$
- No free entry: exogenous measure of potential entrants M

Estimation

- Baseline economy: UK, 2010-2016
 - Five-Quarter Longitudinal Labor Force Survey: workers age, employment status, job tenure, hours worked, OTJ training
 - The Employer Skill Survey: firm size, OTJ training
- Functional form: hiring costs, initial workers' human capital, firm-level productivity, firm-level training costs
- Assumptions:
 - stationary equilibrium
 - baseline economy, $\zeta = 0$
- Matching elasticity η estimated outside the model using GMM \bigcirc
- 13 parameters estimated using MCMC (Chernozhukov and Hong 2003)
- 45 worker- and firm-level targets , non-targeted moments , estimation fit

Estimated distortions across countries

GDP p.c. across countries

Data-model correlation: 0.873

Earnings inequality across countries

21/24

Beyond earnings inequality...

22/24

Employment and Training

- UK vs Indonesia
- OTJ training explains up to 40% of changes in earnings inequality
- Large scale re-training program increases average wage by 16%

Conclusion

- We document how the distribution of labor earnings varies with development
 - inequality at the top shrinks, inequality at the bottom expands
 - the median increases faster than the mean
 - GINI declines
- We build a model of labor market to interpret this evidence
 - positive sorting between workers and firms
 - OTJ training provided by larger (and more productive) firms
- Cross-country patterns can be reproduced by two sources of misallocation
 - firm-level correlated distortions
 - lower labor market visibility
- OTJ training account up to 40% of changes in earnings inequality
- Alternative mechanisms...

Data Source

Country	Year	Source	Country	Year	Source
Austria	2005, 2010	EU-SILC	Latvia	2006, 2010	EU-SILC
Belgium	2005, 2009	EU-SILC	Lithuania	2006, 2009	EU-SILC
Bulgaria	2007	EU-SILC	Luxembourg	2005, 2010	EU-SILC
Croatia	2010	EU-SILC	Malta	2007, 2010	EU-SILC
Cyprus	2005, 2010	EU-SILC	Netherlands	2006, 2010	EU-SILC
Czech republic	2006, 2009	EU-SILC	Norway	2005, 2010	EU-SILC
Denmark	2005, 2009	EU-SILC	Panama	1970	IPUMS
Dominican Republic	1981	IPUMS	Poland	2005, 2009	EU-SILC
Estonia	2005, 2010	EU-SILC	Portugal	2005, 2010	EU-SILC
Finland	2005, 2009	EU-SILC	Puerto Rico	1990, 2000, 2005	IPUMS
France	2005, 2010	EU-SILC	Romania	2007, 2009	EU-SILC
Germany	2005, 2009	EU-SILC	Slovakia	2006, 2009	EU-SILC
Greece	2005, 2009	EU-SILC	Slovenia	2006, 2009	EU-SILC
Hungary	2006, 2010	EU-SILC	Spain	2005, 2009	EU-SILC
Iceland	2005, 2010	EU-SILC	Sweden	2005, 2009	EU-SILC
Israel	1995	IPUMS	Switzerland	2007, 2009	EU-SILC
Italy	2005 2009	EU-SILC	Trinidad and Tobago	2000	IPUMS
India	1993, 1999	IPUMS	USA	2000, 2005, 2010	IPUMS
Indonesia	1976, 1995	IPUMS	Uruguay	2006	IPUMS
Ireland	2005, 2009	EU-SILC	United Kingdom	2005, 2009	EU-SILC
Jamaica	1981,1991,2001	IPUMS	-		

Average wage and salary earnings

The median earnings grow faster than the mean

Inequality at the bottom increases...

...while inequality at the top declines

GINI coefficient

Wage and salary employees

Slope: 0.127 (0.008)

Wage and salary employees

Slope: 0.127 (0.008)

Share of training firms

Source: EC Education and Training Dataset

Share of workers trained in the firms

Source: EC Education and Training Dataset

Share of training firms, by firm size

				Training	firms, %		
		WB-H	ES			CVTS	
	LAC	ME+AFR	ASIA	others		EU15	non-EU15
Firm size					Firm size		
(# employees)					(# employees)		
<20	34.84	18.42	19.32	26.35	<20	44.79	29.18
20-49	54.31	31.99	33.63	38.48	20-49	56.00	39.36
50-249	66.94	41.31	47.02	46.47	50-249	71.67	52.82
250-449	81.13	56.86	47.32	56.65	250-449	86.29	67.64
≥ 500	92.12	68.45	52.28	68.88	500-999	88.00	78.45
					≥ 1000	96.36	88.73

Source: World-Bank Enterprise Survey and Eurostat Education and Training Dataset.

Share of trained workers, by firm size

			Traineo	l workers	s within firms, %		
		WB-H			CVTS		
	LAC	ME+AFR	ASIA	others		EU15	non-EU15
Firm size					Firm size		
(# employees)					(# employees)		
<20	34.36	21.01	27.95	29.63	<50	29.31	21.96
20-49	40.06	25.56	29.72	30.18	50-249	37.92	30.13
50-249	44.35	26.68	35.51	30.36	$\geq \! 500$	49.71	46.25
250-449	52.51	30.30	32.22	28.86			
≥ 500	50.73	32.37	34.34	28.98			

Source: World-Bank Enterprise Survey and Eurostat Education and Training Dataset.

Workers value functions

• The value of being not-employed

$$J^{u}(h) = (1 - \phi_{w})[p^{d}J^{u,h}(h-1) + (1 - p^{d})J^{u,h}(h)] + \phi_{w} \int_{z \in \mathcal{Z}} \int_{\xi \in \mathcal{E}} [\mathbf{1}^{h}(z,\xi,h)J^{e,h}(z,\xi,h) + (1 - \mathbf{1}^{h}(z,\xi,h))J^{u,h}(h)]\psi_{v}(z,\xi)d\xi dz,$$

where

$$J^{u,h}(h) = b + \frac{(1 - \delta^w)}{1 + r} J^u(h).$$

Workers value functions

• The value of being employed:

$$J^{e}(z,\xi,h) = \mathbf{1}^{h}(z,\xi,h)J^{e,h}(z,\xi,h) + (1-\mathbf{1}^{h}(z,\xi,h))J^{u,h}(h),$$

where

$$J^{e,h}(z,\xi,h) = w(z,\xi,h) + \frac{(1-\delta^w)}{1+r} (\delta_f + (1-\delta_f)\delta_s) J^{u,h}(h) + \frac{(1-\delta^w)}{1+r} (1-\delta_f)(1-\delta_s) \tilde{J}^{e,h}(z,\xi,h)$$

and

$$\tilde{J}^{e,h}(z,\xi,h) = [p^h(z,\xi,h)J^e(z,\xi,h+1) - (1-p^h(z,\xi,h))J^e(z,\xi,h)]$$

Firm value functions

• The value of a match

$$V(z,\xi,h) = \mathbf{1}^{h}(z,\xi,h)V^{h}(z,\xi,h),$$

where

$$V^{h}(z,\xi,h) = r(z,h) - w(z,\xi,h) + \frac{(1-\delta_{w})}{1+r}(1-\delta_{f})(1-\delta_{s})\tilde{V}^{h}(z,\xi,h)$$

and

$$\tilde{V}^{h}(z,\xi,h) = \left[\mathbf{1}^{t}(z,\xi,h)\xi + p^{h}(z,\xi,h)V(z,\xi,h+1) + (1-p^{h}(z,\xi,h))V(z,\xi,h)\right]$$

Equilibrium

A stationary RCE consists of workers' and firms' value functions, policy functions for job creation, training, firms' entry and vacancy posted, wage schedule, job contact probabilities for workers and firms, unemployment rate, distribution of employed and unemployed workers across states, distribution of vacancies and firms across states, s.t.:

- optimality: the value functions attain their maximum;
- *bargaining*: the wage schedule is the solution of the bargaining problem;
- training: training policies maximise surplus;
- *market clearing*: goods and labor market are cleared;
- measure of entrants: for all Borel sets $\mathcal{Z} \times \mathcal{E} \subset \mathcal{R}^+ \times \mathcal{R}^+$ it must be that

$$E(\mathcal{Z} \times \mathcal{E}) = M_e \int_{z \in \mathcal{Z}} \int_{\xi \in \mathcal{E}} \mathbf{1}^e(z,\xi) \psi_z(z) \psi_\xi(\xi) dz d\xi$$

where M_e is the measure of potential entrants

• measure of incumbent: for all Borel sets $\mathcal{Z} \times \mathcal{E} \subset \mathcal{R}^+ \times \mathcal{R}^+$ it must be that

$$\Gamma(\mathcal{Z} \times \mathcal{E}) = \frac{1}{\delta_f} E(\mathcal{Z} \times \mathcal{E})$$

• aggregate consistency: workers' and vacancies' distributions replicate themselves through workers' and firms' policy functions. back

Functional forms

• Matching function b/w job seekers U, and vacancies, v:

$$m(U,v) = \frac{Uv}{(U^{\eta} + v^{\eta})^{\frac{1}{\eta}}}, \quad \eta > 0$$

• Convex hiring costs:

$$c(v) = \lambda^{-1} v^{\lambda}, \quad \lambda > 1$$

• Initial human capital distribution:

$$h \sim \log \mathcal{N}(0, \sigma_h), \quad \sigma_h > 0$$

• Firm-level productivity distribution:

$$z \sim \log \mathcal{N}(0, \sigma_z), \quad \sigma_z > 0$$

• Firm-level training costs:

$$\xi \sim \mathcal{U}(\underline{\xi}, \overline{\xi}), \quad \underline{\xi}, \overline{\xi} > 0$$

Elasticity of matching function

• η is estimated to minimize the following objective function:

$$\arg \max_{\{x_0, x_1, x_2, x_3\}} \left[\left(\frac{1}{T} \sum_{t=1}^T Z'_t \epsilon_t(x) \right)' W_T \left(\frac{1}{T} \sum_{t=1}^T Z'_t \epsilon_t(x) \right) \right]$$

where $\epsilon_t(x)$ denotes the moment conditions, i.e.

$$\epsilon_t(x) = \left[h_t - \frac{u_t v_t}{(u_t^{x_0} + v_t^{x_0})^{\frac{1}{x_0}}} - \sum_{i=1}^4 x_i \mathbf{1}_t^{\mathbf{q}=i}\right]$$

with h_t equal to the number of new hirings at time t, v_t the number of open vacancy and u_t the number of non-employed workers

- Seasonal effects removed by including dummies for quarters
- The vector of instruments, Z_t^\prime includes fourth lags for non-employment and active vacancies
- Two-step GMM: estimate of $\hat{\eta} = \hat{x}_0 = 0.5417$ with a s.e. = 0.0134

Summary statistics

	Mean	SD	Min	Max	Ν
Employed workers					
Employed workers	41.629950	11.638060	22	62	85,524
Age				02	/
Female	0.5054908	0.4999703	0	1	85,524
Full-time	0.7559546	0.4295223	0	1	85,524
Hours worked	37.043440	12.098500	1	97	85,524
Log Hourly pay	2.385007	0.5989295	0.025252	7.247456	85,524
Log Quarterly Earnings	8.456721	0.8237451	3.955738	13.39207	85,524
Training	0.2442638	0.4296524	0	1	85,524
Tenure<3 months	0.0377040	0.1904806	0	1	85,524
Tenure $\in [3, 12)$ months	0.0385089	0.1924224	0	1	85,524
Tenure $\in [12, 24)$ months	0.1085912	0.3111274	0	1	85,524
Tenure ≥ 24 months	0.8151959	0.3881409	0	1	85,524

Source: Five-Quarter Longitudinal LFS

Estimates and standard errors

Parameters	Description	Value		Source/Targ	gets	
r	Interest rate	0.0033	annual return of 4%			
δ_w	Workers retirement	0.0099	life-spar	n of 40 years	, ages 25-65	
δ_f	Firm exit	0.0253	annual exit rate of 10.50% (ON			
Parameters	Description	Estimates	St.Dev.	95% C.I.		
δ_s	Match separation	0.01235	0.0012	0.010065	0.014859	
b	Home production	20.9430	1.8241	17.589	25.057	
M_e	Measure of potential entrants	0.01272	0.0444	0.0008	0.1493	
c_e	Entry cost	39.262	3.6646	33.186	47.613	
ξ	Training cost (lower bound)	1.7346	0.1569	1.4546	2.1103	
ξ ξ	Training cost (upper bound)	26.668	2.3036	22.124	31.580	
$\dot{\lambda}_1$	Hiring costs, convexity	2.5246	0.1656	2.0633	2.7461	
β	Bargaining power	0.4573	0.0416	0.3789	0.5497	
σ_h	Initial human capital dispersion	1.1950	0.1110	0.9767	1.4246	
σ_z	Firm-productivity dispersion	1.2044	0.1060	1.0178	1.4697	
p^e	Experience jump	0.2233	0.0194	0.1836	0.2709	
p^t	Training jump	0.0282	0.0030	0.0233	0.0347	
p^d	Depreciation jump	0.4318	0.0400	0.3455	0.5142	

Targeted moments

	Data	Model		Data	Model
Firm-level moment.	s		Worker wage distribu	tion	
Number of firms (over population)	0.171	0.158	Wage at entry, $E[\log(w_1/\bar{w})]$	-0.5176	-0.5048
$E(\ell_t)$	16.423	16.185	Wage after 20 y.o., $E[\log(w_{20}/\bar{w})]$	0.1071	0.1093
$E(\log \ell_t)$	1.7393	1.6996	Wage at re-emp, $E[\log(w_R/\bar{w})]$	-0.3010	-0.1695
$\operatorname{std}(\log \ell_t)$	1.2198	1.3922	Dispersion at entry, $sd[\log w_1]$	0.5818	0.6749
			Dispersion after 20 y.o., $sd[\log w_{20}]$	0.7959	0.7954
Firm-size distributio	n		Dispersion at re-emp, $sd[\log w_R]$	0.8335	0.8329
1-9 employees	72.12	71.08			
10-24 employees	15.95	15.43	Trained workers		
25-49 employees	6.12	6.09	$E\left(\frac{\#\text{trained workers}}{\#\text{workers}}\right)$	0.2114	0.2471
50-99 employees	3.21	4.00			
100-249 employees	1.73	2.78	Worker-level training i	return	
250+ employees	0.88	0.62	$\log w_{it} = \beta_1 1_{it}^t + \epsilon_{it}$	0.1991	0.2077

Targeted moments

	Data	Model		Data	Model
Firm-size p	ercentiles	3	Job tenure r	return	
10th percentile	1	1.083	tenure<3 months	1	1
25th percentile	3	2.285	$tenure \in [3, 12)$ months	1.0551	1.0539
40th percentile	4	3.696	$tenure \in [12, 24)$ months	1.1320	1.1434
50th percentile	5	4.900	$tenure \ge 24 months$	1.3675	1.3893
60th percentile	6	6.732			
75th percentile	11	11.893	Workers trained wi	thin the f	irm
90th percentile	29	35.631	overall	9.121	7.953
95th percentile	53	72.979	1-9 employees	2.229	1.625
99th percentile	202	203.50	10-24 employees	6.381	7.850
			25-49 employees	13.951	18.054
Firm training	g provisio	on	50-99 employees	28.150	34.395
$E\left(\frac{\#trainin}{\#fi}\right)$	ng firms		100-249 employees	63.816	69.194
overall	$0.64\acute{6}$	0.650	250 + employees	225.70	186.17
1-49 employees	0.611	0.644			
20-249 employees	0.776	0.714	Aggregate me	ments	
250+ employees	0.855	0.888	Job duration	5.360	5.036
$E\left(\frac{\#trained}{\#emp}\right)$	$\frac{employees}{loyees}$		Employment rate	0.776	0.788
overall	$0.4588^{'}$	0.4843			

Non-targeted moments

	Data	Model
Wage-size regression		
<10 employees	0	0
$\in [10, 25)$ employees	0.151	0.183
$\in [25, 50)$ employees	0.244	0.342
$\in [50, 250)$ employees	0.407	0.680
$\geq 250 \text{ employees}$	0.586	1.039
Wage inequality		
Log-wage dispersion, $sd[\log w_{it}]$	0.7788	0.9317
Mean-median wage ratio, $E[w_{it}]/p^{50}[w_{it}]$	1.2763	1.2067
90-50 pct. wage ratio, $p^{90}[w_{it}]/p^{50}[w_{it}]$ 50-10 pct. wage ratio, $p^{50}[w_{it}]/p^{10}[w_{it}]$	$2.4100 \\ 2.9384$	$2.5506 \\ 3.2618$

Estimation fit

The role of OTJ training

	Baseline	Counte	rfactual	Explained
Elasticity of matching function: η	0.54167	0.54167	0.31281	-
Distortion correlation: ζ	0	0.30841	0	-
Home production: b	20.9430	20.9430	3.5047	-
Training policy: $1^t(z,\xi,h)$	baseline	counter	rfactual	-
Aggrega	tes			
Non-employment rate	0.2116	0.2361	0.5925	6.432%
Average wage	1	0.9323	0.1241	7.729%
Income per capita	1	0.9030	0.0611	10.331%
Wage profile over ex	perience/te	enure		
Wage growth, $E[\log(w_{25}/\bar{w_1})]$	0.8013	0.7596	0.2797	7.994%
Wage at tenure, ${\geq}24$ months	0.3893	0.4241	0.5833	17.938%
Wage ineq	uality			
Mean-median wage ratio	1.2067	1.2687	1.8047	10.367%
GINI	0.4160	0.4255	0.5061	10.543%

A world without OTJ training

	Baseline	Counterfactual	Baseline	Counterfactual	Explained
	with (OTJ training	w/o (OTJ training	
Elasticity of matching function: η	0.54167	0.31281	0.54167	0.31281	
Distortion correlation: ζ	0.54107	0.30841	0.54107	0.30841	-
Home production: b	20.9430	3.5047	20.9430	3.5047	-
		Aggregates			
Non-employment rate	0.2116	0.5925	0.2028	0.4391	37.962%
Average wage	1	0.1241	1	0.1402	1.838%
Income per capita	1	0.0611	1	0.0864	2.694%
	Wage profile	e over experience/	tenure		
Wage growth, $E[\log(w_{25}/\bar{w_1})]$	0.8013	0.2797	0.7308	0.3628	29.447%
Wage at tenure ≥ 24 months	0.3893	0.4241	0.3697	0.4768	32.492%
	И	Vage inequality			
Mean-median wage ratio	1.2067	1.8047	1.2795	1.6674	35.133%
GINI	0.4160	0.5061	0.4162	0.4874	20.987%

Implications for wage inequality

	UK	Indonesia	a
	Baseline	Counterfactual	Data
Elasticity of matching function: η	0.54167	0.31281	-
Distortion correlation: ζ	0	0.30841	-
Home production: b	20.9430	3.5047	-
Mean-median wage ratio, $E[w_{it}]/p^{50}[w_{it}]$	1.2067	1.8047	1.6872
GINI	0.4160	0.5061	0.5023
90-50 pct. wage ratio, $p^{90}[w_{it}]/p^{50}[w_{it}]$	2.5506	4.4619	3.1818
50-10 pct. wage ratio, $p^{50}[w_{it}]/p^{10}[w_{it}]$	5.2618	2.7292	1.9342

	UK	Indonesia
	Baseline	Counterfactual
Elasticity of matching function: η	0.54167	0.31281
Distortion correlation: ζ	0	0.30841
Home production: b	20.9430	3.5047
Firm-level mo	ments	
Average firm size, $E(\ell_t)$	16.1854	5.1789
Firm size dispersion, $std(\ell_t)$	37.1581	4.5762
Firm size skewness, $skew(\ell_t)$	5.1774	1.6518
Firm training p	rovision	
$E\left(\frac{\#\text{training firms}}{\#\text{firms}}\right),\%$	65.02	6.21
(#mms)		
Wage profile over expe	erience/ten	ure
Wage growth, $E[\log(w_{25}/w_1)]$	0.8013	0.2797
Wage at tenure ≥ 24 months	0.3893	0.5833
Worker-level firm-size	waqe prem	ium
$\log w_{it} = \beta_1 \log \ell_{it} + \epsilon_{it}$	0.0663	0.1388
0 , 1 0		
Training firm wage	e premium	
$\log w_{jt} = \beta_1 1_{jt}^t + \epsilon_{jt}$	0.0397	0.0828
3 J. J. J.		
Aggregate	8	
Non-employment rate	0.2116	0.5925
Average wage	1	0.1241
Income per capita	1	0.0611
A A		

Re-training program for non-employed (Alfonsi et al 21)

- Assumptions: a share of non-employed workers have the option of either searching for job or participating to a re-training program while postponing job search
- Value of being not-employed for a worker with ability h is now equal to

$$J^{u}(h) = \gamma \max\{J^{r}(h), J^{s}(h)\} + (1 - \gamma)J^{s}(h) \quad \gamma \in (0, 1)$$

where

- γ : probability of being eligible for re-training
- value of re-training equal to

$$J^{r}(h) = p^{t} J^{u,h}(h+1) + (1-p^{t}) J^{u,h}(h)$$

• value of searching for a job

$$J^{s}(h) = J^{u,h}(h) + (1 - \phi_{w})p^{d}[J^{u,h}(h - 1) - J^{u,h}(h)] + \phi_{w} \int_{z,\xi} \mathbf{1}^{h}(z,\xi,h)[J^{e,h}(z,\xi,h;w) - J^{u,h}(h)]\psi_{v}(z,\xi)d\xi dz,$$

Re-training attainment

- Long-term non-employed more likely to re-train
- Low-wage workers more like to re-train

	U.K.		
	Baseline	Counter	factual
Elasticity of matching function: η	0.54167	0.31281	0.312
Distortion correlation: ζ	0	0.30841	0.308
Home production: b	20.9430	3.5047	3.504
Re-training under non-employment	no	yes	no
Eligibility: γ	0%	100%	0%
Total cost per re-trained individual:	-	510 USD	-
Re-trained work	ers		
$E\left(\frac{\#\text{re-trained workers}}{\#\text{non-employed workers}}\right), \%$	0	42.77	0
Aggregates			
Non-employment rate	0.2116	0.2679	0.592
Average wage	1	0.1403	0.124
Income per capita	1	0.0946	0.061
Income per capita (net of re-training costs)	1	0.0759	0.061
Wage profile over ex	perience		
Wage growth, $E[\log(w_{25}/\bar{w_1})]$	0.8013	0.3289	0.279
Wage inequali	ty		
GINI	0.4160	0.4998	0.506
Mean-median wage ratio	1.2067	1.7871	1.804

	U.K. Baseline	Indonesia Counterfactual			
		Joint (η,ζ)	Only δ_s (1)	Only δ_f (2)	Joint (δ_s, ζ) (3)
Elasticity of matching function: η	0.54167	0.31281	0.54167	0.54167	0.54167
Distortion correlation: ζ	0	0.30841	0	0	0.65942
Separation rate: δ_s , %	1.235	1.235	5.179	1.235	5.179
Firm exit rate: δ_f , %	2.526	2.526	2.526	3.253	2.526
Home production: b	20.9430	3.5047	15.9428	19.4512	1.4002
Average firm size, $\mathbf{E}[\ell_t]$	16.1854	5.1774	10.2731	15.545	4.4207
Employment rate	0.7884	0.4075	0.6224	0.7411	0.6659
Income per capita	1	0.0611	0.5630	0.8900	0.0504
Training provision, overall %	65.02	6.21	50.08	60.31	0
Wage growth, $E[\log(w_{25}/w_1)]$	0.8013	0.2797	0.5678	0.7561	0.6143
Mean-median wage ratio	1.2067	1.8047	1.4818	1.2686	1.3267
GINI	0.4160	0.5061	0.4614	0.4297	0.4267

- (1): reduction in worker separation over development (Donovan et al. 2020)
- (2): larger firm turnover in less developed countries (Bartelsman et al. 2009)
- (3): reduction in separation (Donovan et al. 2020) + correlated distortions