Wage Determination Across Firms

Horng Chern Wong University of Warwick

Discussion by: Alessandro Ruggieri (UAB and BGSE)

2nd QMUL PhD Workshop

May 24, 2019

This paper

Motivations

• Large evidence of between-firm wage differences for *seemingly identical* workers (Abowd, Kramarz and Margolis, 99)

- Why is that important?
 - long-term wage losses of displaced workers (Lachowska et al., 18)
 - gender wage gap (Card et al., 15)
 - firm-size wage premium (Bloom et al., 18).

Research question

• What are the drivers of the cross-sectional variation of firm-specific wage premia?

Contribution

Methodology

- Builds a framework for wage structural decomposition, featuring:
 - monopsonistic competition in labor market (wage posting+effort)
 - heterogeneous goods markups across firms
 - no restrictions on the elasticity of substitution between inputs
 - firm-specific Hicks neutral productivity
- Estimation performed in four steps
 - compute the average labor productivity in efficiency units
 - estimate production function (control function approach)
 - use firms' intermediate input spending to obtain goods markups
 - compute the firm-specific wage markdowns

Data

- Linked matched employer-employee French administrative datasets
- Time span: 1995-2014
- Sample: Firms with 5+ employees, Workers 16-65 y.o, 2-digit sectors with at least 500 obs within 7-year interval

Major Results

Firm-specific wage premium

Shapley Decomposition of the Variation in Firm Wage Premium

Firm heterogeneity	Shapley
Wage markdown	0.21
Goods markup	0.09
Labor intensity	0.24
A.R.P.H.	0.46
\mathbb{R}^2	1
Average $\#$ of firms p.y.	273,031
Average $\#$ of obs p.y.	$7,\!095,\!504$

Comments

Main wage regression:

Identification assumptions:

$$\operatorname{cov}(\eta_{i,j(i,t)}, \delta_{j(i,t)}) = 0 \quad \operatorname{cov}(\eta_{i,j(i,t)}, \delta_i) = 0$$

- No history dependence: wage (per efficiency unit) is renegotiated every period for everybody
- No life-cycle wage dynamics i.e., no on-the-job learning and training (Flinn et al, 16)

Comments

No workers' complementarity in production

• worker efficiency units enter the firm's production function additively

Second-step estimation

• Perfectly competitive markets for inputs allows to recover goods markup, μ

material-expenditure =
$$\mu^{-1} \times \underbrace{\alpha_m}_{\substack{\text{material intensity} \\ (\text{second-step})}} \times \underbrace{\text{Rev}}_{\substack{\text{revenues} \\ (\text{first step})}}$$

• i.e., financial constraints can generate a wedge in input demand function (Bigio and La'O, 16): third step in the estimation not valid!

Standard errors

• How precise is each component of the firm-wage premium estimated? Maybe too computational expensive!

Possible follow-ups

Firming-up inequality

- Recent trend of wage-inequality in US explained by *firm-driven* wage-inequality (Bloom et al., 18)
- Your framework suited to decompose this pattern into different channels!

Trade and inequality

- Firm component (and assortative matching) relevant to explain link between trade openness and income inequality (Impullitti et al. 18)
- Your framework can shed light on mechanisms behind this relation!